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Abstract
A general model of dense granular flows derived elsewhere is here assessed to understand the validity of some of the
assumptions embedded in the derivation. The isothermal hydrodynamic model has been validated elsewhere, however, due to the
new addition of the heat transfer (both convective and radiative) and reaction models, it is deemed important to again evaluate the
model assumptions and see if they hold under this more complex situation. The separately validated hydrodynamic model is based
on a three fluid model (gas, sand, and biomass) derived from the kinetic theory of granular flows. Separate transport equations
are constructed for cach particle class, allowing for the calculation of the granular stresses, granular conductivities and granular
viscosities, and enabling the description of such phenomena as particle segregation and the evolution of separate temperatures for
each particle class. A previously validated biomass particle pyrolysis model is coupled with the detailed hydrodynamic model
for the binary gas particle mixture. The kinetics scheme is based on superimposed cellulose, hemicellulose, and lignin reactions
enabling the simulation of any biomass feedstock whose initial mass composition with respect to these three primary components
is known. Using results of simulations, we assess a posteriori one modeling and one computational assumption pertaining to the

granular stresses and the granular conductivities, respectively. Further we also investigate the accuracy of the particle heating

model.
Introduction

The interest in clean hydrogen fuel production has trig-
gered substantial activity in high temperature biomass pyrolysis
for the purpose of obtaining a process that maximizes tar yield
while simultaneously minimizing char formation. Biomass py-
rolysis involves the heating of raw biomass in the absence of
an oxidizer in order to extract reaction products for subsequent
processing. Among several reactor geometries, the vortex reac-
tor and the fluidized bed reactor were the subject of research ac-
tivities at the National Renewable Energy Laboratory (NREL),
being potentially attractive as commercial pyrolysis devices. The
vortex reactor was the subject of an earlier study (Miller and
Bellan [17]) accomplished by coupling a detailed model for py-
rolysis to a fundamental fluid dynamics model of the vortex re-
actor. A similarly fundamental and detailed study of the pyroly-
sis conditions in a bubbling fluidized bed is not available in the
literature.

The fluidized bed reactor consists of a cylindrical vessel
partially filled with sand whose main purpose is to provide a
large heat reservoir to keep the mean temperature of the bed
constant. Fresh, relatively cool, biomass is injected into the
reactor through a feeding mechanism in the wall, or directly
into the bed using an injection ‘rod’. Since pyrolysis is an en-
dothermic process, heat is provided to the biomass by heating
the walls of the reactor and by injecting hot steam or nitrogen
which is further used to fluidize the mixture, while also pre-
heating it. The fluidizing gas induces a gas and solid flow pat-
tern in the reactor, with both locally dense and void particle
regions. An overall circulative complex flow occurs, explaining
the excellent mixing behavior of fluidized bed reactors. Follow-
ing introduction in the reactor, the biomass partially mixes with
the sand and heats up. As heating progresses, the particles py-
rolyze and eject product gases (tar and gas; gas denotes here the
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collection of gaseous products complementary to tar) while si-
multaneously forming char which maintains the particle matrix.
Product gases mix up with the fluidizing gas and are transported
towards the reactor exit after which they are cooled to prevent
product degradation, making collection of the condensable tars
possible.

To describe the complex granular flow in this reactor, Lath-
ouwers and Bellan [13] have developed a fundamental model
accounting for the different history of the two particle classes
represented by the sand and biomass, and for the interaction be-
tween gas and particles. This isothermal model has been vali-
dated with data available in the literature [13]. The new addition
by Lathouwers and Bellan [14] of the heat transfer model and
the validated kinetic scheme of Miller and Bellan [16] warrants
a re-evaluation of the assumptions used to derive the hydrody-
namic model, as well as an a posteriori assessment of the heat
transfer model assumptions. This paper describes an examina-
tion of important assumptions used in this model.

Model formulation

The model previously developed by Lathouwers and Bellan
[14] consists of coupled submodels of the biomass kinetics and
of the hydrodynamics of the gas particle mixture. The succinct
description of these submodels is addressed below.

Single particle biomass pyrolysis model

The adopted particle pyrolysis model is that of the detailed
kinetics derived by Miller and Bellan [16], based on super-
imposed cellulose, hemicellulose, and lignin reactions. This
model enables the simulation of different biomass feedstock
through knowledge of the initial mass composition with respect
to these three primary components; biomass impurities are lumped
with the hemicellulose as this model correlated best with the ex-
perimental data. Each of the virgin components undergoes the



same generic competitive reaction scheme:

virgin(s) 5, active(s) (n
active(s) EicH tar(g)
active(s) L, Xchar(s) + (1 — X)gas(g)

tar(g) = gas(g).

As indicated in the above kinetic scheme by the letter in paren-
thesis, the virgin components, the active intermediates and the
char are solid phase species, while tar and gas are vapor prod-
ucts; none of these species are pure chemical species, but in-
stead represent groups of compounds. All reactions are mod-

elled with first order Arrhenius kinetics: K; = A; exp(—E;/RT),

where the rate constants, A;, activation energies, E; for reac-
tions K1, K2, K3 and the mass ratio X are dependent on the
particular component, whereas all heats of reaction and sec-
ondary tar decomposition parameters (K4) are independent of
the source component. The kinetic parameters are specified
in Table 1. The depolymerization reaction K; has Ah; =0
kJ/kg, reaction K is endothermic with Ahy =255 kJ, /kg,
and both the char formation and the secondary tar reactions are
exothermic with Ahy = —20 kJ/kg and Ahy = —42 kJ/kg.
All other properties of gaseous and solid species are listed in
Tables 2 and 3, respectively.

In Miller and Bellan [16], this kinetic model combined with
a porous particle flow dynamics model yielded validated predic-
tions on tar/char yields ranging from the kinetically controlled
regime (micro particles) to the diffusion controlled limit (macro
particles). In the present model, for simplicity, the biomass py-
rolysis is assumed kinetically controlled. This is consistent with
the further assumption (see below) of small Biot number.

Hydrodynamic model

The hydrodynamic model describing the dynamics of the
gas particle mixture is that derived by Lathouwers and Bellan
[13]. Here, we give a brief description of the model, referring
the reader for full details to the derivation of Lathouwers and
Bellan [14].

The model is based on a three fluid model description where
macroscopic transport equations are derived from the kinetic
theory of granular flows using inelastic sphere models, thereby
accounting for collisional transfer in high density regions. Sep-
arate transport equations are constructed for each of the particle
classes, allowing for the independent acceleration of the parti-
cles in each class and the interaction between size classes.

Definitions and averaging

The continuum model was derived by Lathouwers and Bellan
(14] applying separate averaging procedures to both the carrier
gas and solid phases. A phase ensemble average was used for
the carrier phase, combined with a particle ensemble average
where particle properties, such as velocity, are directly aver-
aged.

The general ensemble average of a field quantity ¥(x,t),

(x, t denoting space and time coordinates) is

< U(x,t) >= /‘\I/(x.t)P(H)dII 2)

where P(II) is the probability that a specific realization IT is
encountered in the ensemble. The gas-phase ensemble average
and its density-weighted counterpart are defined (Drew [6]) as
T =< x,¥(x,t) > [agand ¥ =< x,p,¥(x,t) > /agp,,
where p, is the gas density, x, denotes the phase indicator of
the gas phase which is unity in the gas phase and zero other-
wise, and the gas phase fraction, g, is defined as the ensemble
average of the indicator function, i.e. oy =< Xg >

The transport equations for the solids were derived simi-
larly to those for dense gases, using kinetic theory concepts.

Let fi(l)(x, ¢, Y, T, m,t) denote the single particle distri-
bution function of particle class ¢ such that fi(l) is the probable
number of particles of class 7 having their center of mass in the
region [x, x + dx], a velocity in the region [c, ¢ + dc], mass in
the region [m, m + dm], mass fractions in [Yg, Yz + dY¢], and
temperature in [T, T + dT]). With this distribution function, a
particle average is introduced as an integration over the phase
space

Ui(x,1) = i / U, fidedYedTdm. €))

n;
Here n; denotes the number density of the solid class 7, and is
defined as

ni(x,t) = / fidedYedTdm. @)

It is also convenient to introduce mass weighted averages

Ui (x,t) = &% m; ¥, fidedYedT'dm (5
where aiﬁi = nimi = fmzfzdchEdem

Here, «; denotes the local phase fraction of class i (where
pores are excluded, i.e. are counted as part of the gas phase) and
P, its corresponding average particle density. We also introduce
equivalent definitions for @; and p; where the pores of the par-
ticles are counted as volume belonging to the particle. Note
that o;p; = @,p,. Mass weighted averages are also denoted by
brackets, i.e. < ¥ >;= \Tli in the equations below. Using the
above definitions we define the average velocity u; =< ¢; >,
the fluctuation velocity component, C; = ¢; — u;, and the gran-
ular temperature, ©; = % < C? >. The granular temperature
plays a crucial role in the determination of the transport prop-
erties of granular flows and may be interpreted similarly to the
temperature of a normal gas (see e.g. Campbell [4]).

The solidity of a particle, n = 1 — ¢, where ¢ is the poros-
ity of a particle, is defined as the ratio of the volume displaced
by the particle and the volume displaced by the particle had its
pores been closed. The solidity is then easily shown to equal

m; Ye '
ni=T )T 6)

where V; is the total volume of a particle (including its pores).
In the present case of biomass pyrolysis, we assume that the



particle diameter stays constant throughout the pyrolysis, and
that the porosity of the particle simply increases in time (Miller
and Bellan [16]). This assumption is correct when the particle
does not break or erodes.

Macroscopic equations
Applying the averaging formalism to the gas phase equations,
one obtains the macrospcopic equations.

Mass: The mass conservation equation for the gas phase is

3(ap) o~
—5; TV (ep), =T, @)

where ¢, p, and u denote the volume fraction, density and ve-
locity respectively. The term on the right hand side, ', repre-
sents the mass transfer rate originating from pyrolysis.
Similar equations can be derived for each solid class i through
the formalism stated earlier:
9(ap):

—5¢ TV (epu);=T; ®

where the mass transfer rate for each solid class is related to

the average mass reduction of all particles in the specific class,

Fi = O{i‘pi < mlzd_;nt‘l >.

Momentum:

written as
O{apu) .
(—6t_£ + V- (aput)y = —ag VB, + V - 2a,u,S, +

®

a;0; ~
argpofe+ Z -,z&(ui —Ug) -
: 74,12

ZI‘iui

where p, is the thermodynamic pressure, S, denotes the strain
rate tensor Sg = (Viy, + Vay)/2 — (V - 8,)/3, p, is the
shear viscosity, f, is the gravitational acceleration and Ti12 i8
the interaction time scale between fluid and particle. The terms
on the right hand side denote the pressure gradient force, shear
stresses, gravitational body force, the force exerted on the gas
phase by drag on the particles and finally, the effect of mass
transfer on the momentum of the carrier gas.

7i,12 depends strongly on the flow regime; in the dilute
regime it is derived from the drag coefficient, Cy, of a sin-
gle particle in an infinite medium, empirically corrected for the
presence of other surrounding particles by a function f(c,) =
a;” (e.g. Gidaspow [7]), whereas in the dense regime the
classical Ergun relation is used. To avoid discontinuous behav-
ior, a weighted average of the two time scales is introduced

The gas phase momentum equation can be

1 3,3ng(R€1;) ~ -~
-~ w T, [u; — 0| f(@y) + (10)
_wnPe [ _ 5180 lui — 4|
(1-W) 5 (1 ag)Rei +1.75 )

where the present switch function, W(&,) = arctan(150(a, —
0.8))/m + 1/2, gives a rapid transition from one regime to the

other. d; is the diameter of the particle and Re; is the Reynolds
number based on the relative velocity with the gas, Re, = &gpy
[wi —Ug|d;/p,. The single particle drag coefficient Cy is deter-
mined from the well-known correlation (Schiller and Naumnan
[19]) Cy = £=(1 + 0.15Red-557),

The averaged momentum equation for each solids class is

O(cpu); — A
_(%;;_u)_ + V- (apun); = —~&;Vp, — V- (T; + E{) an
+ aipify + P (G, — )
Ti,12
+ (]5,; -+ Fiui.

This equation contains similar terms when compared to its gas
phase counterpart, i.e. a mean pressure gradient, a drag term
having the reverse sign compared to that in the gas phase equa-
tion, and a mass transfer related term. Terms unique to the
solid’s equation are the solid stress tensors, ; and 'E{ ,and a
collisional source term, ¢»; which represents the momentum ex-
change among the various solid classes due to collisions. Clo-
sure relations for these terms, derived by Lathouwers and Bellan
[14], are provided below.

For application in the dense regime, a frictional stress term,
E{ , is added. The proposed model consists of a simple rela-
tionship between stresses and strains: Z{ = —p{ I+ 2,u{ S, for
& > Qmin, Where o,y is the minimum solids fraction at which
frictional transfer becomes influential. Experimental observa-
tions indicate that the frictional normal stress increases rapidly
with bulk density and diverges as oo, is approached. A sim-
ple algebraic representation of this behavior is (c.f. Anderson
and Jackson [1])

of = P
t Y aup

where F'r is a material constant. The frictional viscosity, p{ , 1s
related to the frictional pressure and the angle of internal fric-
tion, ¢, as p{ = p{ sin(¢)/2v/Iz where I, denotes the second
invariant of the strain rate tensor. The following values for the
parameters have been used in the present work: p=2,n=235,
Fr = 0.005, &min = 0.6, @maz = 0.64, and ¢ = 25 degrees
(see 1] and [13]).

Fr (a - amin)p

(amaz - a)n (12)

Species: The gas phase species equations is

d(apY), s s
5 T V- (apuYe), = V- ayp,De V¥

+agp,Roe + > 0, < RITY >

(3

(13)

The first term on the right hand side represents molecular diffu-
sion and D is the diffusion coefficient; the second term is the
average production rate of specie ¢ due to gas phase reaction;
whereas the final term denotes the mass source for a particular
component due to solid’s reactions, converting solids to gas.
For the species in each solid class, a similar equation is



obtained

—d—((—ygf& + V- (a/ﬁuic),,; =V (oeiﬁ,i’Diin/ig) + Lie.

(14)

The first term on the right hand side denotes the diffusion of
species due to fluctuations in the velocity of the solids. Dy
is calculated as the self diffusion coefficient which is directly
derived from the velocity distribution of the particles (see Lath-
ouwers and Bellan [14] for a detailed derivation). The second
term, [';e = 04p; < R;¢ > is the average mass source arising
from the pyrolysis reactions.

Thermal energy:
phase is

The thermal energy equation for the gas

_ ) -
(apcp)gg% =V oAV + Y 022y

2

Nuy(Ti - T,)

(15)
+ > AT (C Ty — Cp oTy)

+ FZZSQ(C,?“:’E - Cp,yTy)}-

The first term on the right hand side is the thermal conductive
flux where ), is the thermal conductivity. The second term rep-
resents the heat exchange with the particles by conduction and
convection; Nu; denotes the effective Nusselt number associ-
ated with this transfer. The final collection of terms is the ex-
cess enthalpy flux entering the gas phase carried by the gaseous
products leaving the particles, where it is assumed that the vapor
products leave the particle at its mean temperature. I';,9, and
[';557 denote the averaged mass transfer rates of respectively,
tar and gas.

In the present case, the Nusselt number is given by the sin-
gle particle Nusselt relation, multiplied by a correction factor,
Fy;, accounting for the effect of mass transfer on the heat trans-
fer rate, i.e.

Nu = Nqub[(Rebl,Prg). (16)

The formulation used here for the blowing factor is that taken
from Miller et al.[18] and was also given by Gyarmathy [9]
where the factor depends on the ‘blowing Reynolds number’,
Rey = r‘n/wdiug,

PrgReb1/2

Fb[ = m‘i'. (17)

The necessity of this blowing factor correction will be evaluated
below on an a posteriori basis. To calculate Nug, we use the
standard Ranz correlation: Nug =2 + 0.66Re}/2Pr3/3.

The final enthalpy equation for each solid class is

(iPCy)i = =V (2B, Cpi D V) +
(18)
6Ai>\ ~ =~ 1
—%—gx\[ Z(Tg—Ti)—kap, < %‘ > +
@B < m; (hv - hz)
PiS T m; >

The second term on the right hand side is also present in the
gas phase equation, and was discussed above. The term 5, <
@r:/m; > denotes the source due to thermal radiation pro-
cesses which is modeled through a six-flux method (see Zaichik
et al. [24] and Lathouwers and Bellan [14]).

The final term on the right hand side of eq. 18 is exactly
equal to the total average heat of reaction of all reactions taking
place in the particle (both solid to solid and solid to gas).

Granular kinetic energy: The transport equation for the
granular temperature of each particle class is

g[m +V- (a,'o’ﬁ@)z] =-%,:Vu;~V-q (19

3
+v; + §Fi@i-

The first term on the right hand side of eq. 19 is the production
of kinetic energy of the fluctuations due to shearing of the solid
phase. q; is the average ‘heat flux’ both due fluctuations in
the velocity of the particles and through collisions. The source
term, -y, represents the effects of energy redistribution among
particle classes and the dissipative effect of inelastic collisions.
The effect of mass transfer is contained in the last term of eq.
19.

Collisional and kinetic contributions: The single parti-
cle distribution function is assumed to be Maxwellian, i.e. the
lowest order approximation to the Boltzmann equation in the
absence of dissipative effects

—(ci = W;)?

Wy o gy T
f' (x1 C‘Ly t) (271'(")1)3/2 exp[ 2@1

1

Qo)

This is a good approximation when the flow has small spatial
gradients, the collisions are nearly elastic and the particles are
sufficiently heavy (i.e. the time between collisions is much
smaller than the particle relaxation time; the particle-fluid cor-
relation is small).

The collision integrals require specification of the radial
distribution function at contact, h;x(r), accounting ior the ef-
fects of excluded area and particle shielding on the spatial dis-
tribution of colliding pairs. The form of the radial distribution
function is taken from Jenkins and Mancini [10], slightly ad-
justed to prevent overpacking of the solids, amq, being the



maximum allowable solids volume fraction

1 LTy 3

lig = 2hH

)

T+ o (1 ha a/am,a.v)-

2
+8 Tk E
" <rr,;+(rk.> (1 = &/ omaz)®

Here ¢ = 27 /35" n,0? where ; denotes the radius of a parti-
cle of class <.

The present study is targeted towards dense systems where
the drift between particle classes is small; this assumption will
be evaluated below. Under this assumption, the collision inte-
grals are approximated by assuming that the relative velocity
Au,, = u; — uy, is small compared to the square root of the
sum of the granular temperatures, (©; + ©4)'/2. A more de-
tailed discussion may be found in Lathouwers and Bellan [14].

Using the above distributions and neglecting products of
the spatial gradients, products of (1 — e;;) with spatial gra-
dients where e, is the restitution coefficient, and products of
Awuyy, with the spatial gradients, yields the following constitu-
tive equations for ¢,, ¥;, q;, and v,

I - (-Y/(—Ym.a;l;

b= Y Pe(3VIRO: + 00 (T ~5) (2
k

+ Eaik(@i + @k)VID &}
N

3
, 5 ~
i = nims@ L+ > {pul - pi¥[28; + Vo] (23)
k .
5. .
— K28k + SV - T}

a =) {xkFVO; +kFVey} (24)

k

v, = Z —2\/2?Fz’k(@i + @k)1/2{2(M,;@,; — Mk@k) (25)
k

+ Mi(1 - eix)(©; + )}

where Fir = ningm; Mi(1 + eik)hika?k. The indices on the
viscosities and conductivities are arranged as follows: the sub-
script ¢ indicates the relevance for class i, the first superscript
labels the pertinent velocity gradient, and the & superscript de-
notes the collisions with particles from class k. The granular
pressure and granular transport coefficients are

1
pit = nankmiMi(L + eix) hikol(9i + ©)  (26)

ik = -il—s-MnmkmiM,f(l + ek hika e (0 + ©1)%/2/0;
@7

1 .
;Lfk = 1—5\/ 27rnmkmk1\/[12(l -+ eik)hikaf’k(@i + @k)s/z/@k
(28)

! PN
;g_f" = 3-\/27rn‘,;n,;,;m,,.\[k(l + eik)/zL;,,ﬂle((-)i + (—)k)l’ “ X

(29
(A[Lzelc/(_)ll)
4 1 -
;-.:é’”" = 3 2rngngm; My (1 + eik)hikﬂfk(ei + (‘)/\;)l/l X
30)
(M;0,;/0y).

The terms in ¢; represent solid-solid drag and ordinary diffu-
sion, respectively (thermal diffusion has been neglected). For
coding purposes, the shear rates of both phases are assumned
equal (small drift) so that the actually used viscosity equals the
sum of several contributions: p; = Y, u* + uf% A simi-
lar procedure has been used for the conductivity. This compu-
tational assumption avoids the appearance of cross derivatives
in the granular energy equation, thereby simplifying the dis-
cretization and rendering the computations more efficient. This
computational assumption will be assessed below.

Auxiliary relations  To account for the spatio-temporal dis-
tribution of the mass of the biomass particles, the following
transport equation for the mean particle mass of each reactive
solid is solved:

m + V- (aﬁﬁm)l =V. aiﬁiDiiV?n‘i = 2I';m;.

ot
3D

Initial and boundary conditions

Initial conditions are specified corresponding to the stan-
dard fluid bed sketched in Fig. 1. Although the real fluidized
bed is a cylindrical vessel, for computational simplicity, the
present computational domain is approximated to be rectangu-
lar with coordinates (x,y). The fluid bed is initially at rest,
having specified the velocities of all phases to be null; the gran-
ular energy is set to a small number, typically 10~"m?/s2. To
induce bubbling, several void areas are created at the bottom of
the bed by setting the void fraction to unity in specified com-
putational cells. Practically, there are three such regions dis-
tributed on the x axis, at locations corresponding to cells 5-7,
18-20 and 30-32. Areas are then created by making these re-
gions 5 computational cells high in the y direction. The effects
of the initial conditions survive a minute fraction of the total
physical time and do not affect the statistical behavior of the
fluid flow.

Inflow conditions are specified to reflect realistic conditions
corresponding to bubbling fluidization; at inlet sections, the vol-
ume fractions and velocities are specified together with the tem-
peratures of all phases and the composition of the gas phase and
biomass particles, depending on the pertinent feedstock used.
The initial temperature of both sand and gas in the domain is
set equal to the inlet temperature of the fluidization gas. Hence,
it is assumed that the fluidization gas has preheated the sand,
even though initially the sand bed is stationary. This does not
affect the calculation of product yield, as we are interested in
the asymptotic (i.e. long time) behavior of the reactor; that is,
long after which a statistically steady flow field has emerged.



Along solid walls, no-slip conditions are applied for the gas
phase (1, = 0). whereas the solids are allowed to slip freely
(o, /On =0, where n is a unit normal and the subscript ¢ de-
notes langential). Zero-flux boundary conditions are imposed
for the solids thermal energy equations, consistent with the en-
ergy transfer in particle wall collisions being negligible. As the
thermal boundary layers along the wall are not resolved, a sim-
ilar condition is imposed for the gas phase.

At outlets, Neumann conditions are specified for all vari-
ables. Solids are inhibited to exit the domain, simulating a fine
solids-filtering grid.

Numerical procedure

Spatial discretization of the governing equations is based
on a finite volume technique using a staggered grid. All con-
vective fluxes are approximated with a second-order accurate
bounded TVD-scheme. The time discretization is based on a
backward Euler scheme in combination with a pressure-correction
technique. The momentum equations of all phases are solved in
a coupled manner, though separately for each velocity direction.
Compared with the well-known Partial Elimination Algorithm
(PEA), the present approach is more general (see Lathouwers
[11] for more details on full-field coupling and multiphase pres-
sure correction algorithms). The species and energy equations
constitute a strongly coupled, stiff system of equations. To
avoid very large linear systems arising from (the necessarily)
implicit discretization, a time splitting is used (Strang [23]) for
the combined species and energy system consisting of three
steps: (i) performance of a half convection-diffusion time step,
(ii) time integration of the equations over a full time step with
only the source terms present (reaction terms, radiation, etc.),
(iii) performance of another half convection-diffusion time step.
The advantage of this split scheme is that during steps (i) and

(iii), the equations are decoupled into standard convection-diffusion

systems which are easily handled, whereas in step (ii) there
is no spatial coupling. The stiff integration in step (ii) is per-
formed by using the well-known stiff integrator VODE (Brown
et al. [3]). All sparse linear systems arising from the dis-
cretization of convection-diffusion systems are solved with pre-
conditioned Krylov methods (Conjugate Gradient (CG) for the
pressure Poisson equation and Generalized Minimum RESidual
(GMRES) for the other transport equations; see ¢.g. Barrett et
al. [2]).

All computations have been performed on a 40 x 148 uni-
form grid (x and y directions respectively). Runs have been
performed in parallel (although the code is serial) on a SGI Ori-
gin 2000 supercomputer. Simulation of 5 seconds of physical
time requires approximately 250 hours of CPU time per run.

Biomass particle pyrolysis in a fluidized bed reactor
Among the pyrolysis reactor designs investigated for com-
mercial production of condensable tars from biomass, the flu-
idized bed reactor is potentially efficient due to the high particle
heating rates that can be achieved (e.g. Scott et al. [22]) and its
excellent mixing properties. Although the process has received
considerable attention experimentally (e.g. Scott and Piskorz
[20],[21]), currently there are no fundamental theoretical anal-

yses available, addressing simultaneously all physico-chemical
processes in the reactor. Most of the work to date related to flu-
idized bed reactors has focused on single-particle pyrolysis in
a gas streamn which requires a priori knowledge ot ambient gas
flow parameters, its temperature in particular (Miller and Bellan
[16], Di Felice et al. [5]).

Simulation details

The reactor standard size is 0.1m x 0.55m (see Fig. 1),
and it is filled with sand only up to a height of 0.163 m at a vol-
ume fraction of 0.6 which corresponds to dense packing. The
geometry has been chosen to resemble that used in experiments
by Scott and Piskorz [20],[21], among others. In the simula-
tions, the biomass is fed through an inlet section in one of the
side walls, together with an amount of gas, which preheats the
biomass during the feeding process. The center of feed point 1
is located 4.6 cm from the bottom of the bed and has a height
(area) of 1.86 cm; feeder no. 2 has the same height (area) and is
located 12.1 ¢m from the bottom. In the present simulations, the
temperature of the gas used for fluidization, T}, is equal to that
of the flow fed through the biomass feed section. In a previous -
study [14], different feedstock has been simulated by varying
the cellulose/hemicellulose/lignin proportions, however, for the
purpose of assessing model assumptions, only simulations with
bagasse (whose composition is 36% cellulose, 47% hemicellu-
lose and 17% lignin) are considered. This strategy is justified
by the insensitivity of the results to the feedstock under con-
sideration [14]. The initial diameter of the biomass particles is
uniform in each simulation and is here varied from 0.5 to 1.0
mm, which are common values in practical operation; the sand
particles have a constant diameter of 0.5 mm. Biomass parti-
cles are assumed to have an initial porosity of 0.7 (c.f. Miller
and Bellan [16]) and the biomass feed flux is constant and has a
value of 0.5 kg/m?2s. The gas velocity through the feeder is 0.5
m/s, and the gas flow used for fluidization of the mixture is 0.5
m/s and is uniform over the bottom of the domain. The initial
temperature of biomass is 400 K whereas the initial temperature
of the gas is 750 K.

Assessment of model assumptions

Collisional model assumptions

In the derivation of the model, several assumptions have been
made. Here we assess three of these assumptions, all related to
the derivation of the stress tensors and the granular conductivity.

The particle hydrodynamics model is a so-called ‘dry’ gran-
ular model where the effects of the surrounding gas on the stress
tensor and granular conductivity is neglected. For this assump-
tion to be correct, the ratio of a representative collision time
scale should be small compared to the particle relaxation time
scale. This assumption can be now assessed using the results
of the simulation. The gas-particle relaxation time is given by
Ti12, given by eq. 10. On the other hand, the average collision
time for a particie of class ¢ to collide with a particle of class &
is given by the expression 1/7.x = nkhik(‘r?k 87 (0; + Ok)
(under the assumption of small relative velocity between the
two classes). As the dynamics of the bed is dominated by the
motion of the sand, the ratio 7 55/ Ts,12 IS taken as a representa-



tive measure of the validity of the dry granular flow assumption.
Fig. 2 shows this ratio as a function of the sand volume fraction
for cach grid point in the bed at 5 s.. The results indicate that
this ratio decreases as the particle volume fraction increases, as
expecled. The results further indicate that for all but the very
dilute regions, the collision time is smaller than the particle re-
laxation time, confirming the validity of the dry granular flow
model that constitutes one of the elements upon which the stress
relations are based. If the threshold for the validity of the dry
granular flow is considered to be 7, 55/Ts,12 < 0.1, then it is
clear that in all regions where a; > 0.15 the dry granular flow
assumption holds. To explore in which regions the assumption
may be invalid, the «; distribution at § s of physical time is de-
picted in Fig. 3. In all regions of the reactor except around the
void particle regions named “bubbles”, the dry granular flow as-
sumption holds. One could argue that for the present application
focused on tar production, very little tar evolves from a low par-
ticle volume fraction region, and therefore the dry granular flow
assumption is indeed very appropriate. Although this assump-
tion evaluation is based on a single realization and at a specified
physical time, the parametric study performed elsewhere [14]
indicates that the results are typical.

To simplify the coding, cross derivatives are eliminated
from the granular energy equations by assuming that for the
purpose of calculating granular thermal conductivities and vis-
cosities, the granular energies obey the equidistribution law;
however, solutions are still obtained separately for each gran-
ular energy corresponding to a size class. This procedure sim-
plifies the numerical solution procedure and retains the possibil-
ity of having granular temperatures that are out of equilibrium
since the assumption is invoked only for the purpose of cal-
culating the transport terms. To test this assumption, the ratio
(m®)s/(mO)y, representing the deviation from equipartition,
has been plotted in Fig. 4 at a physical time of 5s as function
of the sand volume fraction and for each grid point in the nu-
merical domain. The results show that for the dense regime this
ratio is indeed close to unity, confirming the assumption that
equipartition holds approximately. For the more dilute regime,
the deviations from equipartition become larger. Noteworthy,
the equipartition assumption holds in the regime where the dry
granular assumption is valid, making the two assumptions con-
sistent.

Finally, it is of interest to examine the assumption of small
relative velocity between the two particle classes as it was used
to estimate the collision integrals which yielded the form of the
granular constitutive relations and the granular transport prop-
erties; see Lathouwers and Bellan [14] for details. We note that,
to our knowledge, only Gourdel et al. [8] calculated these col-
lision integrals without the benefit of this assumption, but only
for the simple case of homogeneous flow. Depicted in Fig. 5 is
the ratio z = 0.75(Aw;x)2/[3/2 x (6, + Op)]. Clearly, at most
locations within the very dense particle regime the assumption
z < 1 is satisfied, however, this hypothesis is not reliable un-
less s > 0.4. The regime 2 < 1 is confined to an even higher
particle volume fraction regime. For small «, particularly for
as < 0.25, the small drift velocity assumption is inappropriate.

The above discussion shows that the basis for the granular

stress and conductivity models is firm in the very dense particle
regime which is of interest for the present applicalion as it is
the one dominating tar production. The small drift velocity as-
sumption must though be reconsidered for dense, moderate and
small volume fraction regimes, and should make the subject of
future studies.

Heat transfer assumptions

Heat transfer is a process governing the biomass temperature
rise and the ensuing evolution of tar; see Lathouwers and Bellan
[14] for details. Heat transfer is here of two types: conductive
and radiative. The importance of the radiative heat transfer has
been assessed by Lathouwers and Bellan [15], and it was found
to have a non-negligible contribution. Here we evaluate some
elements of the conductive heat transfer model. As shown in
eq. 16, a blowing factor correction whose expression is given
by eq. 17 is incorporated in the calculation of the Nusselt num-
ber. To investigate the importance of this correction, the blow-
ing factor has been extracted from several simulations differing
by the initial biomass particle size. Table 4 lists the minimum
value of Fj; throughout the domain at ¢ = 5 s. Clearly, for
all cases investigated the blowing effect significantly reduces
the heat transfer to the particles (up to 40% in the large diame-
ter case). This means that neglecting this correction could give
overly optimistic results concerning conversion rates of biomass
to tar.

Another simplifying assumption made in modeling the heat
transfer to the particles is that the resistance to heat transfer is
mainly at the surface of the particles (see Lathouwers and Bel-
lan [14]), i.e. the Biot number, B7, is assumed small. This as-
sumption is consistent with the further requirement of the Eule-
rian volume averaging approach combined with the Lagrangian
tracking of the particle thermodynamic energy on its trajectory
through the use of its mean temperature only. Table 4 further
lists values of Bi encountered for simulations initiated with sev-
eral initial biomass particle size. The results indicate that the
range of Biot numbers encountered for the biomass particles is
independent of initial particle size. Furthermore, Bi is below
unity, indicating the approximate applicability of the particle
heating theory. We note however that Bi is not < 1, showing
that internal heat transfer may also play a role. An inquiry about
the validity of the small B assumption for the sand particles re-
veals that Bi is approximately 10 times larger than for biomass
(10 times lower thermal conductivity). This is however of no
concern, as the sand temperature quickly becomes close to that
of the gas (see Lathouwers and Bellan [14]), which then renders
the heat transfer model marginally important, regardless of the
specific heat transfer correlation.

Conclusions

Several assumptions made in the development of a com-
prehensive mathematical model describing the evolution of a
granular flow in a fluidized bed reactor have been assessed.
The fluidized bed reactor consists of a cylindrical vessel filled
with sand which is fluidized by injecting a (relatively hot) flow
of nitrogen through its porous bottom plate; the sand is ini-
tially at room temperature and heats up by contact with the



hotter nitrogen flow. Fresh biomass, introduced through one
side of the reactor, heats up and pyrolyses. The specific ap-
plication under consideration is the production and harvesting
of tar from biomass pyrolysis for hydrogen production. The
model is based on detailed submodels for the hydrodynamics
of the gas-solid mixture and the biomass kinetics. The sepa-
rately validated biomass pyrolysis kinetics model of Miller and
Bellan [16] was chosen for its ability to differentiate between
the various biomass feeds available through the use of a super-
imposed cellulose, hemicellulose and lignin kinetics scheme.
The hydrodynamics model is based on the detailed multiphase
model of Lathouwers and Bellan {14] which describes the dy-
namics and heat transfer of dense, reactive gas-solid mixtures.
The multiphase flow mathematical description is obtained from
systematic averaging of the local instantaneous equations using
the kinetic theory of granular flows in combination with rigid
sphere interaction models explicitly accounting for collisional
transfer between the particles. The isothermal model was pre-
viously validated using experimental data (see Lathouwers and
Bellan [13]).

In this study, we used results from some of the extensive
simulations of Lathouwers and Bellan [14] to evaluate, on an
a posteriori basis, assumptions related to the derivation of the
granular stress model, including the granular conductivities and
viscosities, and also assumptions pertaining to the heat trans-
fer model. Examination of these assumptions showed that the
small particle drift approximation (i.e. small difference between
velocities of the two particle classes) is not met, except in the
very high volume fraction particle regime. This points out that
new strategies must be developed in calculating the collision
integrals which are the basis of the granular flow constitutive
relations and transport coefficients. However, under the small
dritt assumption, both the dry granular flow assumption and the
equipartition of granular energy assumption used uniquely for
the calculation of transport coefficients were valid in the high
volume ratio regime which is of most interest for the present
application. The heat transfer model was shown to be approx-
imately justified by the smaller than unity Biot number for the
biomass; however, the Biot number is not much smaller than
unity, showing that internal processes may also play a role. Fi-
nally, it was shown that the blowing factor introduced to correct
for the reduction in heat transfer due to mass evolution form the
particle is indeed smaller than unity, indicating that this correc-
tion is truly necessary.
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Reaction A(1/s) E(J/kmol)

Table 1:

tion K3 are: X° = 0.35, X" = 0.60, and X* = 0.75.

2.8 x 1019
3.28 x 1014
1.30 x 100
2.10 x 1016
8.75 x 1013
2.60 x 10!
9.60 x 108
1.50 x 10°
7.70 % 108
4.28 x 10°

242.4 x 10°
196.5 x 108
150.5 x 108
186.7 x 108
202.4 x 108
145.7 x 108
107.6 x 10°
143.8 x 108
111.4 x 108
108 x 10%

Rate constants and activation energy for the biomass
pyrolysis kinetics scheme. The char formation ratios for reac-

Species W Cp Ax10° px10° D x10?
Ny 28.013 112091 5.63 3.58 8.52
Gas 30 1100 2.577 3.0 1.1

Tar 100 2500 2.577 3.0 1.1

Table 2: Property values for the gas phase species. The prop-
erties for nitrogen are taken at T = 800K and p = 100k Pa.
Units are as follows: W (kg/kmol); Cp(J/kgK); M(J/msK),
p(kg/ms); and D(m?/s).

Species  Cp(J/kgK)  p(kg/m?)
Biomass 2300 2167
Char 1100 2333
Sand 800 2600

Table 3:

Specific heat and densities for solid species. Biomass

refers to both virgin species and active species. The densities
are the intrinsic values, not accounting for the pores.

d,(mm) Fy  Bi(biomass)
0.5 0.75 0.10-0.25
0.75 0.69 0.08-0.30
1.0 060 0.08—0.34

Table 4: Minimum blowing factor encountered in domain and
range of Biot numbers encountered for the biomass particles for
different biomass particle diameters.
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Figure 4: Equilibration ratio m;0,/my©, as function of the

Figure 2: Ratio of the gas-particle and the collisional timescale particle volume fraction in the bed at all grid locations at ¢ = 5

as function of the particle volume fraction at all grid locations
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Figure 5: Ratio between the drift velocity of the two particle
classes, and an average granular energy of the particles at all

Figure 3:  Volume fraction of solids att = 5 s. grid locations at £ = 5 s.



